Monday, January 24, 2011

RESONANCE - WAVES, ELECTRICITY AND MAGNETISM

Table of Contents

Ø WHAT IS RESONANCE

Ø TYPES OF RESONANCE

1. Acoustic resonance

2.Mechanical resonance

3.Electrical resonance

4.Optical resonance

5.Orbital resonance

6.Atomic, particle, and molecular resonance

7.Electron paramagnetic resonance

Ø APPLICATION OF RESONANCE

INTRODUCTION ON RESONANCE

Resonance is a common thread which runs through almost every branch of physics, and yet a lot of people have never studied it. Without resonance we wouldn't have radio, television, music, or swings on playgrounds, not to mention cool gismos like Tesla coils. Of course, resonance also has its dark side. It occasionally causes a bridge to collapse, a helicopter to fly apart, or other inconveniences. Unlike black holes, time travel, and quantum mechanics, resonance is common place and easy to observe. Yet, it is one of the most striking and unexpected phenomenon in all of physics.

WHAT IS RESONANCE?

In physics, resonance is the tendency of a system (usually a linear system) to oscillate at larger amplitude at some frequencies than at others. These are known as the system's resonant frequencies (or resonance frequencies). At these frequencies, even small periodic driving forces can produce large amplitude oscillations.

Resonances occur when a system is able to store and easily transfer energy between two or more different storage modes (such as kinetic energy and potential energy in the case of a pendulum). However, there are some losses from cycle to cycle, called damping. When damping is small, the resonant frequency is approximately equal to a natural frequency of the system, which is a frequency of unforced vibrations. Some systems have multiple, distinct, resonant frequencies.

Resonance phenomena occur with all types of vibrations or waves: there is mechanical resonance, acoustic resonance, electromagnetic resonance, nuclear magnetic resonance (NMR), electron spin resonance (ESR) and resonance of quantum wave functions. Resonant systems can be used to generate vibrations of a specific frequency (e.g. musical instruments), or pick out specific frequencies from a complex vibration containing many frequencies.A

File:Resonance.PNG

Examples

http://upload.wikimedia.org/wikipedia/commons/thumb/4/47/Little_girl_on_swing.jpg/280px-Little_girl_on_swing.jpg

http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png

Pushing a person in a swing is a common example of resonance. The loaded swing, a pendulum, has a natural frequency of oscillation, its resonant frequency, and resists being pushed at a faster or slower rate.

One familiar example is a playground swing, which acts as a pendulum. Pushing a person in a swing in time with the natural interval of the swing (its resonance frequency) will make the swing go higher and higher (maximum amplitude), while attempts to push the swing at a faster or slower tempo will result in smaller arcs. This is because the energy the swing absorbs is maximized when the pushes are 'in phase' with the swing's oscillations, while some of the swing's energy is actually extracted by the opposing force of the pushes when they are not.

Resonance occurs widely in nature, and is exploited in many man-made devices. It is the mechanism by which virtually all sinusoidal waves and vibrations are generated. Many sounds we hear, such as when hard objects of metal, glass, or wood are struck, are caused by brief resonant vibrations in the object. Light and other short wavelength electromagnetic radiation is produced by resonance on an atomic scale, such as electrons in atoms

TYPES OF RESONANCE

Mechanical resonance is the tendency of a mechanical system to absorb more energy when the frequency of its oscillations matches the system's natural frequency of vibration (its resonance frequency or resonant frequency) than it does at other frequencies. It may cause violent swaying motions and even catastrophic failure in improperly constructed structures including bridges, buildings, and airplanes a phenomenon known as resonance disaster.

Avoiding resonance disasters is a major concern in every building, tower and bridge construction project. As a countermeasure, shock mounts can be installed to absorb resonant frequencies and thus dissipate the absorbed energy. The Taipei 101 building relies on a 660-ton pendulum — a tuned mass damper — to cancel resonance. Furthermore, the structure is designed to resonate at a frequency which does not typically occur. Buildings in seismic zones are often constructed to take into account the oscillating frequencies of expected ground motion. In addition, engineers designing objects having engines must ensure that the mechanical resonant frequencies of the component parts do not match driving vibrational frequencies of the motors or other strongly oscillating parts.

Many resonant objects have more than one resonance frequency, particularly at harmonics (multiples) of the strongest resonance. It will vibrate easily at those frequencies, and less so at other frequencies. Many clocks keep time by mechanical resonance in a balance wheel, pendulum, or quartz crystal.

Acoustic resonance is a branch of mechanical resonance that is concerned the mechanical vibrations in the frequency range of human hearing, in other words sound. For humans, hearing is normally limited to frequencies between about 12 Hz and 20,000 Hz (20 kHz),[12]

Acoustic resonance is an important consideration for instrument builders, as most acoustic instruments use resonators, such as the strings and body of a violin, the length of tube in a flute, and the shape of a drum membrane. Acoustic resonance is also important for hearing. For example, resonance of a stiff structural element, called the basilar membrane within the cochlea of the inner ear allows hairs on the membrane to detect sound. (For mammals the membrane by having different resonance on either end so that high frequencies are concentrated on one end and low frequencies on the other.)

Like mechanical resonance, acoustic resonance can result in catastrophic failure of the vibrator. The classic example of this is breaking a wine glass with sound at the precise resonant frequency of the glass; although this is difficult in practice.

Electrical resonance

Electrical resonance occurs in an electric circuit at a particular resonance frequency when the impedance between the input and output of the circuit is at a minimum (or when the transfer function is at a maximum). Often this happens when the impedance between the input and output of the circuit is almost zero and when the transfer function is close to one.

Optical resonance

An optical cavity or optical resonator is an arrangement of mirrors that forms a standing wave cavity resonator for light waves. Optical cavities are a major component of lasers, surrounding the gain medium and providing feedback of the laser light. They are also used in optical parametric oscillators and some interferometers. Light confined in the cavity reflects multiple times producing standing waves for certain resonance frequencies. The standing wave patterns produced are called modes; longitudinal modes differ only in frequency while transverse modes differ for different frequencies and have different intensity patterns across the cross section of the beam. Ring resonators and whispering galleries are example of optical resonators which do not form standing waves.

Different resonator types are distinguished by the focal lengths of the two mirrors and the distance between them. (Flat mirrors are not often used because of the difficulty of aligning them to the needed precision.) The geometry (resonator type) must be chosen so that the beam remains stable (that the size of the beam does not continually grow with multiple reflections. Resonator types are also designed to meet other criteria such as minimum beam waist or having no focal point (and therefore intense light at that point) inside the cavity.

Optical cavities are designed to have a very large Q factor;[14] a beam will reflect a very large number of times with little attenuation. Therefore the frequency line width of the beam is very small indeed compared to the frequency of the laser.

Additional optical resonances are Guided-mode resonances and surface plasmon resonance, which result in anomalus reflection and high evanescent fields at resonance. In this case the resonant modes are guided modes of a waveguide or surface plasmon modes of a dielectric-metallic interface. These modes are usually excited by a subwavelength grating.

Orbital resonance

In celestial mechanics, an orbital resonance occurs when two orbiting bodies exert a regular, periodic gravitational influence on each other, usually due to their orbital periods being related by a ratio of two small integers. Orbital resonances greatly enhance the mutual gravitational influence of the bodies. In most cases, this results in an unstable interaction, in which the bodies exchange momentum and shift orbits until the resonance no longer exists. Under some circumstances, a resonant system can be stable and self correcting, so that the bodies remain in resonance. Examples are the 1:2:4 resonance of Jupiter's moons Ganymede, Europa, and Io, and the 2:3 resonance between Pluto and Neptune. Unstable resonances with Saturn's inner moons give rise to gaps in the rings of Saturn. The special case of 1:1 resonance (between bodies with similar orbital radii) causes large Solar System bodies to clear the neighborhood around their orbits by ejecting nearly everything else around them; this effect is used in the current definition of a planet.

Atomic, particle, and molecular resonance

Nuclear magnetic resonance (NMR) is the name given to a physical resonance phenomenon involving the observation of specific quantum mechanical magnetic properties of an atomic nucleus in the presence of an applied, external magnetic field. Many scientific techniques exploit NMR phenomena to study molecular physics, crystals and non-crystalline materials through NMR spectroscopy. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI).

All nuclei that contain odd numbers of nucleons have an intrinsic magnetic moment and angular momentum. A key feature of NMR is that the resonance frequency of a particular substance is directly proportional to the strength of the applied magnetic field. It is this feature that is exploited in imaging techniques; if a sample is placed in a non-uniform magnetic field then the resonance frequencies of the sample's nuclei depend on where in the field they are located. Therefore, the particle can be located quite precisely from its resonance frequency.

Electron paramagnetic resonance, otherwise known as Electron Spin Resonance (ESR) is a spectroscopic technique similar to NMR used with unpaired electrons instead. Materials for which this can be applied are much more limited since the material needs to both have an unpaired spin and be paramagnetic.

The Mössbauer effect (German: Mößbauer [Meß-Bauer]) is a physical phenomenon discovered by Rudolf Mößbauer in 1957; it refers to the resonant and recoil-free emission and absorption of gamma ray photons by atoms bound in a solid form.

Resonance (particle physics): In quantum mechanics and quantum field theory resonances may appear in similar circumstances to classical physics. However, they can also be thought of as unstable particles, with the formula above still valid if the Γ is the decay rate and Ω replaced by the particle's mass M. In that case, the formula just comes from the particle's propagator, with its mass replaced by the complex number M + iΓ. The formula is further related to the particle's decay rate by the optical theorem.

Resonance causing a vibration on the International Space Station

The rocket engines for the International Space Station are controlled by autopilot. Ordinarily the uploaded parameters for controlling the engine control system for the Zvezda module will cause the rocket engines to boost the International Space Station to a higher orbit. The rocket engines are hinge-mounted, and ordinarily the operation is not noticed by the crew. But on January 14, 2009, the uploaded parameters caused the autopilot to swing the rocket engines in larger and larger oscillations, at a frequency of 0.5Hz. These oscillations were captured on video, and lasted for 142 seconds

Applications of resonance

So far, the phenomenon of resonance appears to be a useless curiosity, or at most a nuisance to be avoided (especially if series resonance makes for a short-circuit across our AC voltage source!). However, this is not the case. Resonance is a very valuable property of reactive AC circuits, employed in a variety of applications.

One use for resonance is to establish a condition of stable frequency in circuits designed to produce AC signals. Usually, a parallel (tank) circuit is used for this purpose, with the capacitor and inductor directly connected together, exchanging energy between each other. Just as a pendulum can be used to stabilize the frequency of a clock mechanism's oscillations, so can a tank circuit be used to stabilize the electrical frequency of an AC oscillator circuit. As was noted before, the frequency set by the tank circuit is solely dependent upon the values of L and C, and not on the magnitudes of voltage or current present in the oscillations: (Figure below)

mhtml:file://E:\sem-2\TERM%20PAPER\PHY111(T.P)\Applications%20of%20resonance%20%20RESONANCE.mht!http://sub.allaboutcircuits.com/images/02100.png

Resonant circuit serves as stable frequency source.

Another use for resonance is in applications where the effects of greatly increased or decreased impedance at a particular frequency is desired. A resonant circuit can be used to “block” (present high impedance toward) a frequency or range of frequencies, thus acting as a sort of frequency “filter” to strain certain frequencies out of a mix of others. In fact, these particular circuits are called filters, and their design constitutes a discipline of study all by itself: (Figure below)

mhtml:file://E:\sem-2\TERM%20PAPER\PHY111(T.P)\Applications%20of%20resonance%20%20RESONANCE.mht!http://sub.allaboutcircuits.com/images/02101.png

Resonant circuit serves as filter.

In essence, this is how analog radio receiver tuner circuits work to filter, or select, one station frequency out of the mix of different radio station frequency signals intercepted by the antenna.

1 comment:

  1. I just wanted to add a comment here to mention thanks for you very nice ideas. Blogs are troublesome to run and time consuming thus I appreciate when I see well written material. Your time isn’t going to waste with your posts. Thanks so much and stick with it No doubt you will definitely reach your goals! have a great day!

    online auction

    ReplyDelete