Wednesday, April 20, 2011

INTEGRATED CIRCUITS

CONTENTS

· HISTORY OF IC

· INTRODUCTION OF ICs

· EXAMPLES OF ICs

· CLASSIFICATION OF ICs

· TYPES OF ICs

· PIN CONFIGURATION

· MANUFACTURE

· IMPACT OF ICs

· FUTURE SCOPE

INTRODUCTION

The integrated circuit is nothing more than a very advanced electric circuit. An electric circuit is made from different electrical components such as transistors, resistors, capacitors and diodes, that are connected to each other in different ways. These components have different behaviors.

The transistor acts like a switch. It can turn electricity on or off, or it can amplify current. It is used for example in computers to store information, or in stereo amplifiers to make the sound signal stronger.

The resistor limits the flow of electricity and gives us the possibility to control the amount of current that is allowed to pass. Resistors are used, among other things, to control the volume in television sets or radios.

The capacitor collects electricity and releases it all in one quick burst; like for instance in cameras where a tiny battery can provide enough energy to fire the flashbulb.

The diode stops electricity under some conditions and allows it to pass only when these conditions change. This is used in, for example, photocells where a light beam that is broken triggers the diode to stop electricity from flowing through it.

These components are like the building blocks in an electrical construction kit. Depending on how the components are put together when building the circuit, everything from a burglar alarm to a computer microprocessor can be constructed.

IC is an assembly of electronic components, fabricated as a single unit, in which miniaturized active devices (e.g., transistors and diodes) and passive devices (e.g., capacitors and resistors) and their interconnections are built up on a thin substrate of semiconductor material (typically silicon). The resulting circuit is thus a small monolithic “chip,” which may be as small as a few square centimetres or only a few square millimetres. The individual circuit components are generally microscopic in size.

Integrated circuits have their origin in the invention of the transistor in 1947 by William B. Shockley and his team at the American Telephone and Telegraph Company’s Bell Laboratories. Shockley’s team (including John Bardeen and Walter H. Brattain) found that, under the right circumstances, electrons would form a barrier at the surface of certain crystals, and they learned to control the flow of electricity through the crystal by manipulating this barrier. Controlling electron flow through a crystal allowed the team to create a device that could perform certain electrical operations, such as signal amplification, that were previously done by vacuum tubes. They named this device a transistor, from a combination of the words transfer and resistor (see photograph). The study of methods of creating electronic devices using solid materials became known as solid-state electronics. Solid-state devices proved to be much sturdier, easier to work with, more reliable, much smaller, and less expensive than vacuum tubes. Using the same principles and materials, engineers soon learned to create other electrical components, such as resistors and capacitors. Now that electrical devices could be made so small, the largest part of a circuit was the awkward wiring between the devices.

In 1958 Jack Kilby of Texas Instruments, Inc., and Robert Noyce of Fairchild Semiconductor Corporation independently thought of a way to reduce circuit size further. They laid very thin paths of metal (usually aluminum or copper) directly on the same piece of material as their devices. These small paths acted as wires. With this technique an entire circuit could be “integrated” on a single piece of solid material and an integrated circuit (IC) thus created. ICs can contain hundreds of thousands of individual transistors on a single piece of material the size of a pea. Working with that many vacuum tubes would have been unrealistically awkward and expensive. The invention of the integrated circuit made technologies of the Information Age feasible. ICs are now used extensively in all walks of life, from cars to toasters to amusement park rides.

SOME EXAMPLES OF ICs

CLASSIFICATION OF ICs

Integrated circuits are often classified by its capacity, which is measured by the number of transistors and other electronic components contained on a chip:

SSI (small-scale integration): Up to 100 electronic components per chip The first integrated circuits contained only a few transistors. "Small-Scale Integration" (SSI), digital circuits containing transistors numbering in the tens provided a few logic gates for example, while early linear ICs such as the Plessey SL201 or the Philips TAA320 had as few as two transistors.

MSI (medium-scale integration): From 100 to 3,000 electronic components per chip .They were attractive economically because while they cost little more to produce than SSI devices, they allowed more complex systems to be produced using smaller circuit boards, less assembly work (because of fewer separate components), and a number of other advantages.

LSI(large-scale integration): From 3,000 to 100,000 electronic components per chip Integration" (LSI) in the mid 1970s, with tens of thousands of transistors per chip.

Integrated circuits such as 1K-bit RAMs, calculator chips, and the first microprocessors, that began to be manufactured in moderate quantities in the early 1970s, had under 4000 transistors. True LSI circuits, approaching 10000 transistors, began to be produced around 1974, for computer main memories and second-generation microprocessors

VLSI(very large-scale integration): From 100,000 to 1,000,000 electronic components per chip very large-scale integration" (VLSI). The development started with hundreds of thousands of transistors in the early 1980s, and continues beyond several billion transistors as of 2007.

There was no single breakthrough that allowed this increase in complexity, though many factors helped. Manufacturing moved to smaller rules and cleaner fabs, allowing them to produce chips with more transistors with adequate yield, as summarized by the International Technology Roadmap for Semiconductors.

ULSI(ultra large-scale integration): More than 1 million electronic components per chip

Wafer-scale integration (WSI) is a system of building very-large integrated circuits that uses an entire silicon wafer to produce a single "super-chip". Through a combination of large size and reduced packaging, WSI could lead to dramatically reduced costs for some systems, notably massively parallel supercomputers. The name is taken from the term Very-Large-Scale Integration, the current state of the art when WSI was being developed.

System-on-a-Chip (SoC or SOC) is an integrated circuit in which all the components needed for a computer or other system are included on a single chip. The design of such a device can be complex and costly, and building disparate components on a single piece of silicon may compromise the efficiency of some elements. However, these drawbacks are offset by lower manufacturing and assembly costs and by a greatly reduced power budget: because signals among the components are kept on-die, much less power is required (see Packaging, above).

Three Dimensional Integrated Circuit (3D-IC) has two or more layers of active electronic components that are integrated both vertically and horizontally into a single circuit. Communication between layers uses on-die signaling, so power consumption is much lower than in equivalent separate circuits. Judicious use of short vertical wires can substantially reduce overall wire length for faster operation.

TYPES OF ICs

Analog versus digital circuits

Analog, or linear, circuits typically use only a few components and are thus some of the simplest types of ICs. Generally, analog circuits are connected to devices that collect signals from the environment or send signals back to the environment. For example, a microphone converts fluctuating vocal sounds into an electrical signal of varying voltage. An analog circuit then modifies the signal in some useful way—such as amplifying it or filtering it of undesirable noise. Such a signal might then be fed back to a loudspeaker, which would reproduce the tones originally picked up by the microphone. Another typical use for an analog circuit is to control some device in response to continual changes in the environment. For example, a temperature sensor sends a varying signal to a thermostat, which can be programmed to turn an air conditioner, heater, or oven on and off once the signal has reached a certain value.

A digital circuit, on the other hand, is designed to accept only voltages of specific given values. A circuit that uses only two states is known as a binary circuit. Circuit design with binary quantities, “on” and “off” representing 1 and 0 (i.e., true and false), uses the logic of Boolean algebra. The three basic logic functions—NOT, AND, and OR—together with their truth tables are given in the figureThe logic symbol, its corresponding function, and the truth table defining the operation are shown. … [Credits : Encyclopædia Britannica, Inc.]. (Arithmetic is also performed in the binary number system employing Boolean algebra.) These basic elements are combined in the design of ICs for digital computers and associated devices to perform the desired functions.

PIN CONFIGURATIONS

Bipolar integrated circuits

A simple bipolar inverter circuit using a diffused resistor and an npn transistor is shown in Fig. 1. The input voltage Vin is applied to the base of the transistor. When Vin is zero or negative with respect to the emitter, no current flows. As a result, no voltage drop exists across the resistor, and the output voltage Vout will be the same as the externally applied biasing voltage, +5 V in this example. When a positive input voltage is applied, the transistor becomes conducting. Current now flows through the transistor, hence through the resistor: as a result, the output voltage decreases. Thus, the change in input voltage appears inverted at the output.

MOS integrated circuits

The other major class of integrated circuits is called MOS because its principal device is a metal oxide semiconductor field-effect transistor (MOSFET). It is more suitable for very large-scale integration (VLSI) than bipolar circuits because MOS transistors are self-isolating and can have an average size of less than 10−7 in.−2 (10−5 mm2). This has made it practical to use millions of transistors per circuit. Because of this high-density capability, MOS transistors are used for high-density random-access memories (RAMs), read-only memories (ROMs), and microprocessors.

Manufacture

Rendering of a small standard cell with three metal layers (dielectric has been removed). The sand-colored structures are metal interconnect, with the vertical pillars being contacts, typically plugs of tungsten. The reddish structures are polysilicon gates, and the solid at the bottom is the crystalline silicon bulk.

Schematic structure of a CMOS chip, as built in the early 2000s. The graphic shows LDD-MISFET's on an SOI substrate with five metallization layers and solder bump for flip-chip bonding. It also shows the section for FEOL (front-end of line), BEOL (back-end of line) and first parts of back-end process.

The semiconductors of the periodic table of the chemical elements were identified as the most likely materials for a solid state vacuum tube by researchers like William Shockley at Bell Laboratories starting in the 1930s. Starting with copper oxide, proceeding to germanium, then silicon, the materials were systematically studied in the 1940s and 1950s. Today, silicon monocrystals are the main substrate used for integrated circuits (ICs) although some III-V compounds of the periodic table such as gallium arsenide are used for specialized applications like LEDs, lasers, solar cells and the highest-speed integrated circuits. It took decades to perfect methods of creating crystals without defects in the crystalline structure of the semiconducting material.

Semiconductor ICs are fabricated in a layer process which includes these key process steps:

  • Imaging
  • Deposition
  • Etching

Advances in integrated circuits

The integrated circuit from an Intel 8742, an 8-bit microcontroller that includes a CPU running at 12 MHz, 128 bytes of RAM, 2048 bytes of EPROM, and I/O in the same chip.

Among the most advanced integrated circuits are the microprocessors or "cores", which control everything from computers to cellular phones to digital microwave ovens. Digital memory chips and ASICs are examples of other families of integrated circuits that are important to the modern information society. While the cost of designing and developing a complex integrated circuit is quite high, when spread across typically millions of production units the individual IC cost is minimized. The performance of ICs is high because the small size allows short traces which in turn allows low power logic (such as CMOS) to be used at fast switching speeds.

ICs have consistently migrated to smaller feature sizes over the years, allowing more circuitry to be packed on each chip. This increased capacity per unit area can be used to decrease cost and/or increase functionality—see Moore's law which, in its modern interpretation, states that the number of transistors in an integrated circuit doubles every two years. In general, as the feature size shrinks, almost everything improves—the cost per unit and the switching power consumption go down, and the speed goes up. However, ICs with nanometer-scale devices are not without their problems, principal among which is leakage current (see subthreshold leakage for a discussion of this), although these problems are not insurmountable and will likely be solved or at least ameliorated by the introduction of high-k dielectrics. Since these speed and power consumption gains are apparent to the end user, there is fierce competition among the manufacturers to use finer geometries. This process, and the expected progress over the next few years, is well described by the International Technology Roadmap for Semiconductors (ITRS).

IMPACT OF ICs

The impact of Kilby's tiny chip has been far-reaching. Many of the electronics products of today could not have been developed without it. The chip virtually created the modern computer industry, transforming yesterday's room-size machines into today's array of mainframes, minicomputers and personal computers.

The chip restructured communications, fostering a host of new ways for instant exchanges of information between people, businesses and nations.

· Without the chip, man could not explore space or fly to the moon.

· The chip helps the deaf to hear and is the heartbeat of a myriad of medical diagnostic machines.

· The chip has also touched education, transportation, manufacturing and entertainment.

For Texas Instruments, the integrated circuit has played a pivotal role. Over the years, the company has produced billions of chips. But the integrated circuit has done more than help grow TI. It has enabled an entire industry to grow. Since 1961, the worldwide electronics market has grown from $29 billion to nearly $1,500 billion.

This growth will depend on the continued development of newer and better technologies -- like those being developed at Texas Instruments.

Toward the Future

With continuing advances in semiconductors, you can look forward to more new amazing encounters with electronic equipment. Imagine calling your day care center to check on your child, and seeing her smiling face in the screen on your cell phone. Imaging turning on the oven from your car phone as you pull out of the parking lot at the end of the day. When you get home, dinner will be nearly done. Imagine setting your car on autopilot, and looking over notes for your next day's meeting on your commute home. Imagine you want to see a movie. You order it from the web, and within a matter of seconds it's ready to view on your television at home.

It sounds like the stuff of science fiction, but new breakthroughs are only a short stride away, with the help of technologies being developed at Texas Instruments.

No comments:

Post a Comment